The Vibrational Spectra of *a*-Alkaline Earth Pyrophosphates*,†

B. C. CORNILSEN

Department of Chemistry and Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931

AND R. A. CONDRATE, SR.

Division of Engineering and Science, New York State College of Ceramics, Alfred University, Alfred, New York 14802

Received July 13, 1977; in revised form, August 23, 1977

Raman spectra and middle infrared absorption spectra (4000-200 cm⁻¹) were measured for α -Ca₂P₂O₇, α -Sr₂P₂O₇, and α -Ba₂P₂O₇. These spectra were interpreted using factor group analyses, and band assignments were made. Noncoincidences in the infrared and Raman spectra of α -Sr₂P₂O₇ indicated that this material possesses the centrosymmetric space group D_{2h}^{16} -Pnma rather than the noncentrosymmetric space group, $C_{2\nu}^{9}$ -Pna2₁. The similarities between the vibrational spectra of α -Ba₂P₂O₇ and α -Sr₂P₂O₇ suggested that α -Ba₂P₂O₇ is isostructural with α -Sr₂P₂O₇. Differences were noted in the vibrational spectra of monoclinic α -Ca₂P₂O₇ and the two orthorhombic α -phases, α -Sr₂P₂O₇ and α -Ba₂P₂O₇, which were related to differences in their crystal structures. The P₂O₇⁴⁻-anions of all three compounds contained nonlinear P-O-P bond angles.

Introduction

Alkaline earth pyrophosphates are interesting solid-state materials which display several reversible and irreversible phase transformations. This occurrence is not surprising because of the configurational flexibility of the pyrophosphate anion (1). Many investigators have measured and analyzed the infrared spectra of alkaline earth pyrophosphates for structural information (2–12). However, none of these studies have included their Raman spectra. Only the Raman spectra of α - and β -Mg₂P₂O₇ have been reported (13). This lack of Raman data can lead to a misinterpretation of

‡ Based on a thesis submitted by B. C. Cornilsen for the Ph.D. degree in Ceramic Science. their vibrational spectra with respect to structure. In this paper, both the infrared and Raman spectra are reported for the α -phases of several alkaline earth pyrophosphates. These spectra are interpreted using factor group analyses, and band assignments are made. The analyses present related structural information for the α -phases.

Experimental

Preparation of Materials

The preparation of α -Ca₂P₂O₇ involved a three-step chemical process. First, CaHPO₄ was prepared by a method described by Ranby *et al.* (14). Approximately 15.0 g of CaCl₂ was dissolved in 10 ml of boiling water. A hot concentrated NH₄H₂PO₄ solution was slowly added dropwise to an excess of hot CaCl₂ solution. The resulting CaHPO₄ pre-

^{*} Presented at the 169th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1975.

cipitate was washed with distilled water and dried with acetone. γ -Ca₂P₂O₇ was then prepared by the decomposition of CaHPO₄ at 718°C (14–16). Finally, α -Ca₂P₂O₇ was prepared by sintering pressed pellets of γ -Ca₂P₂O₇ at 1300°C for approximately 20 hr (14–17). The pellets which were formed by pressing powders at 25 000 psi possessed high structural integrity.

 α -Sr₂P₂O₇ was prepared by a two-step procedure. First, SrHPO₄ was formed by mixing solutions of SrCl₂ and (NH₄)₂HPO₄ (14, 18, 19). Two different SrHPO₄ phases may be isolated depending upon the temperature of the reacting solutions. The β -phase is formed below 25°C, while the α -phase is formed above this temperature. α -Sr₂P₂O₇ was then formed in this study by decomposition of either α - or β -SrHPO₄ at 800°C (18, 19).

 α -Ba₂P₂O₇ was prepared by a two step chemical process (2, 3). First, Ba₂P₂O₇ · H₂O was precipitated by adding Na₄P₂O₇ solution to a warm solution of BaCl₂. Then the resulting precipitate was dehydrated at 440°C in order to form α -Ba₂P₂O₇.

Wet chemical and emission spectrographic analyses were used to determine the stoichiometry and the concentrations of the major constituents present and to demonstrate the low concentrations of impurities. The X-ray diffraction patterns were characteristic of the various α -phases.

Infrared Measurements

Infrared spectra were measured on a Perkin–Elmer Model 621 double-beam grating spectrophotometer with a CO_2 and H_2O purging device. Both KBr pellet and nujol mull techniques were used to obtain infrared spectra (4000–200 cm⁻¹). The instrument was calibrated with polystyrene film and indene. Wavenumber accuracy is within ± 2 cm⁻¹ for narrow bands.

Raman Measurements

Raman spectra were measured using a Spex Industries Model 1401 double mono-

chromator and a Coherent Radiation Laboratory Model 51 argon ion laser. The 4880-Å exciting line was used to obtain the illustrated spectra. However, these spectra were checked for plasma lines, ghosts or fluorescence by using the laser line at 5145 Å. Normal 90° collection optics were used for spectral measurements. Raman spectra were measured for both powders and sintered pellets. The spectrophotometer was calibrated using indene and the plasma lines of the laser. Wavenumber accuracy was within $+2 \text{ cm}^{-1}$ for sharp bands.

Results and Discussion

Crystal Structures and Spectral Predictions for α -Alkaline Earth Pyrophosphates

 α -Ca₂P₂O₇ possesses a primitive unit cell with a monoclinic structure. Its space group is $P2_1/n$ - C_{2h}^5 with four molecular units per primitive unit cell (20). α -Mg₂P₂O₇ possesses a similar space group ($P2_1/c$ - C_{2h}^5) (21, 22). In each case, the P₂O₇⁴⁻-anions are located on C₁-sites. Correlation of the symmetry species for the C_{2v}-free ion group to the C_{2h}factor group via the C₁-site group leads to the spectral predictions summarized in Table I.

TABLE I

Factor Group Predictions for α -Ca₂P₂O₇ Using Space Group $P2_1/n-C_{2k}^5$

C ₂ , free ion group symmet species	ry C ₁ site symmetry	group y species	C _{2h} factor group symmetry species		
$ \begin{array}{c} 7A_{1} \\ 4A_{2} \\ 6B_{1} \\ 4B_{2} \end{array} $	21	A	$21A_{g}(\mathbf{R})$ $21B_{g}(\mathbf{R})$ $21A_{u}(ir)$ $21B_{u}(ir)$		
Activities	Free ion	Site group	Factor group		
Raman Infrared Coincidences	21 17 17	21 21 21	42 42 0		

Only accidental coincidences should occur between the infrared and Raman bands of these centrosymmetric materials.

The primitive unit cell of α -Sr₂P₂O₂ possesses an orthorhombic structure. Two different analyses of single-crystal X-ray diffraction data indicated two different crystal structures, a centrosymmetric structure with the space group $Pnma-D_{2h}^{16}$ and a noncentrosymmetric structure with the space group $Pna2_1 - C_{2\nu}^9$ (23, 24). Four molecular units are found in the primitive unit cells of each structure. An EPR study of Mn^{2+} -doped α -Sr₂P₂O₂ suggests that the structure of the α phase is centrosymmetric (25). However, this prediction depends upon the assumption that the added dopant does not perturb the crystal structure. The spectral predictions for the two possible crystal structures using factor group analyses are listed in Table II. The major difference between the predictions for the two structures is that no coincidences are expected between infrared and Raman bands for the centrosymmetric structure whereas some coincidences are expected for the noncentrosymmetric structure.

No X-ray diffraction analysis with single crystals has been reported for α -Ba₂P₂O₇. X-Ray powder diffraction patterns have been interpreted in terms of an orthorhombic structure (14). A theoretical powder pattern has been calculated in this study using the cell parameters reported by Ranby *et al.*, and the atomic coordinates for the centrosymmetric space group of α -Sr₂P₂O₇ (14, 23). The calculated X-ray powder diffraction pattern agrees with both the pattern observed in this study and the pattern reported by Ranby *et al.* (14), suggesting a similarity in the crystal structures for α -Sr₂P₂O₇ and α -Ba₂P₂O₇.

Interpretation of the Vibrational Spectra of α -Ca₂P₂O₇

The infrared spectrum of α -Ca₂P₂O₇ is illustrated in Fig. 1 while its Raman spectrum is illustrated in Fig. 2. Its empirical band assignments are listed in Table III. These assign-

TABLE II

SPECTRAL PREDICTIONS FOR $a \cdot Sr_2P_2O_7$ USING SPACE GROUPS Pnma- D_{12}^{16} AND Pna2₁- C_{12}^{9}

C _{2v} free ion group symmetry species	C _s site group symmetry species	D _{2h} factor group symmetry species
7.4,	12 //	$\frac{13A_{R}(R)}{8B_{1R}(R)}$
4A2		$8B_{2g}(R)$ $13B_{3g}(R)$
4B ₁		$\frac{8A_u \text{ (i.a.)}}{13B_{11} \text{ (ir)}}$
6B ₂		$13B_{2u} (ir) 8B_{3u} (ir)$
C ₂ , free ion species	C_1 site species	C _{2v} factor group species
$ \begin{array}{c} 7A_1 \\ 4A_2 \\ 4B_1 \\ 6B_2 \end{array} $	214	$21A_{1}(ir, R)$ $21A_{2}(R)$ $21B_{1}(ir, R)$ $21B_{2}(ir, R)$
Factor group	D _{2h}	C _{2v}
Raman active:	42	84
Infrared active: Coincidences:	34 0	63 63

ments are made empirically with respect to those reported earlier for the $Mg_2P_2O_7$ polymorphs (13). The degree of mixing of the various modes of motion (stretching, bending, etc.) has not been determined for the various vibrational fundamentals of α -Ca₂P₂O₂ and the remaining pyrophosphates by normal coordinate analysis, and must be considered in a later study in order to understand the exact nature of these fundamentals. Impurity bands noted by earlier investigators for β -Ca₂P₂O₂ at ca. 950 and 727 cm⁻¹ are not observed in the illustrated infrared spectrum (2, 9). More than 22 bands are observed for the internal modes indicating that a site group model for the $P_2O_7^{4-}$ -anion is inadequate, and that a factor group model must be applied. In general,

FIG. 1. The infrared spectra of α -Ca₂P₂O₇, α -Sr₂P₂O₇, and α -Ba₂P₂O₇.

noncoincidences are apparent between a majority of the infrared and Raman bands, which

is consistent with the predictions of the applied centrosymmetric factor group model. Even though α -Ca₂P₂O₇ and α -Mg₂P₂O₇ possess similar factor groups, observed spectral features such as band shapes, relative intensities of bands, band locations, and band numbers are somewhat different. Apparently, these differences for the two monoclinic crystals can be related to differences in their unit cell parameters and the distortion of the structure of the $P_2O_7^{4-}$ -anion. The P-O-P bond angles are 130 and 144° for a-Ca₂P₂O₇ and a-Mg₂P₂O₇, respectively. Also, the structure of the $P_2O_7^{4-}$ -anion for α -Mg₂ P_2O_7 deviates further from an eclipsed C_{2v} -type configuration of terminal PO₃ units than for α - $Ca_{2}P_{2}O_{7}$. These angular differences for the anions strongly influence the unit cell parameters. Differences were noted earlier in the vibrational spectra of CaHfO₁ and SrHfO₁ which possess similar crystal structures with the same space group (26). The spectral differences for the latter materials were related to the degree of monoclinic distortion of the crystal structure.

The band assignments made in this investigation for α -Ca₂P₂O₇ are consistent with those made earlier for α -Mg₂P₂O₇ (see Table

FIG. 2. The Raman spectrum of α -Ca₂P₂O₇.

a-Mg ₂ P ₂ O ₇		a-Ca ₂ P ₂ O ₇		a-Sr ₂ P ₂ O ₇		$a - Ba_2 P_2 O_7$		
ir (25)	Raman (13)	ir	Raman	ir (2)	Raman	ir (9)	Raman	Assignments
1211	1192	1205	1210	1186	1197	1156	1167	<u></u>
1193	1144	1165	1163	1163	1153	1126	1164	
1133	1126	1155	1152	1144	1128	1109	1128 >	$v_{PO_2}^a$
1118	1113	1120	1105	1117	1099		1102	10,
1105							1090 🕽	
1081	1089	1060	1074	1068	1068	1034	1049 \	V ^S PO1
	1064	1041	1055	1049			- }	,
1052 100	1005	1025	1015	1014	1042	1003 1004	1004 \	$v_{\rm PO}^{a}$
			995		1009		ſ	103
982	972	980	974	989	968	969	953 }	V ^a POP
			953	979		958	ſ	101
761	748	752	775	749	768	736	753 }	V ^S POP
740							Į	
638	641	619	629	621	623	609	617	
587	617	605	616	613	611	603	605	
558	583	580	591	563	571	564	570	
509	559	570	579	548	556	556	552	
454	494	553	558	503	531	539 ²	534 >	δ_{PO}
437	464	533	542	489	497	487	485	102
(388)	413	500	537	434	482	472	443	
(360)	398	490	504	(338)	447	431	350	
(348)	380	430	455		360	(337)	336	
. ,	354	325	373		336		ز	
			352					
			337					

TABLE III

Band Assignments for Various α -Alkaline Earth Pyrophosphates (cm⁻¹)

III) (13). For instance, the intense band in the Raman spectrum at 775 cm⁻¹ can be assigned to the symmetric bridge P–O stretching mode. This mode was observed at 748 cm⁻¹ for α -Mg₂P₂O₇ (13). Two Raman bands (1055 and 1074 cm⁻¹) were observed for α -Ca₂P₂O₇ in the symmetrical terminal P–O stretching region. The P₂O₇⁴⁻-free ion model with C_{2ν}-symmetry predicts two symmetrical terminal P–O stretching modes belonging to the A₁-symmetry species. Apparently, the two observed Raman bands are Raman-active factor group components of these free-ion modes. The same modes were observed earlier in the Raman spectrum at 1064 and 1089 cm⁻¹ for

 α -Mg₂P₂O₇ (13). Similar relationships observed between the other infrared and Raman bands of α -Ca₂P₂O₇ and α -Mg₂P₂O₇ can be used in the assignment of the remaining internal vibrational modes for the P₂O₇⁴⁻-anion of α -Ca₂P₂O₇.

Interpretation of the Vibrational Spectra of α -Sr₂P₂O₇ and α -Ba₂P₂O₇

The infrared and Raman spectra of α -Sr₂P₂O₇ are illustrated in Figs. 1 and 3, respectively. The empirical band assignments are listed in Table III. Noncoincidences are observed between most infrared and Raman bands. Therefore, similarly to the interpretat-

FIG. 3. The Raman spectrum of a-Sr₂P₂O₇.

tion of the EPR data for doped α -Sr₂P₂O₂, our interpretation of the observed vibrational data suggests that the centrosymmetric space group is the most probable space group for α -Sr₂P₂O₇ (25). The band features for the Raman spectrum of α -Sr₂P₂O₇ are different than those of α -Ca₂P₂O₂. For instance, only one factor-group split component is observed for the symmetric terminal P-O stretching mode of α -Sr₂P₂O₂. Earlier, two split bands were observed for α -Ca₂P₂O₂. Also, in contrast to α -Ca₂P₂O₇, the band associated with the symmetric terminal P-O stretching mode of α -Sr₂P₂O₂ is more intense than the band associated with the symmetric bridge P-O stretching mode. The two above-mentioned spectral differences can be explained if one assumes that the bands associated with the symmetric terminal stretching modes of the C_{2v} -free ion model are overlapped for a-Sr₂P₂O₇. Apparently, this overlap results because of the orthorhombic arrangement of the $P_2O_7^{4-}$ -anions in the crystal structure of α -Sr₂P₂O₇. The remaining band assignments for α -Sr₂P₂O₇ are consistent with those made for both α -Ca₂P₂O₂ and α -Mg₂P₂O₂.

The infrared and Raman spectra of a-Ba₂P₂O₇ are shown in Figs. 1 and 4, respectively. Observed band maxima are listed in Table III. The same differences in the vibrational spectra noted for α -Sr₂P₂O₇ with respect to α -Ca₂P₂O₇ are also observed in the case of α - $Ba_2P_2O_7$. For instance, only one strong band is observed in the Raman spectrum of α -Ba₂P₂O₂ which can be assigned to the symmetric terminal P-O stretching mode. Also, this Raman band is more intense than the band belonging to the symmetric bridge P-O stretching mode. These spectral observations for α -Ba₂P₂O₂ fortify the interpretation that the above-mentioned differences in the vibrational band features for monoclinic α - $Ca_{2}P_{2}O_{2}$ and orthorhombic α -phases can be related to the differences in their crystal structures.

The band features of both the infrared and the Raman spectra of α -Sr₂P₂O₇ and α -Ba₂P₂O₇ are strikingly similar. A one-to-one correlation seems to exist between most of their bands. Several of the expected bands might not be observed because they are hidden behind intense bands. For instance, the Raman

FIG. 4. The Raman spectrum of α -Ba₂P₂O₁.

band of α -Ba₂P₂O₇ related to the Raman band at 1042 cm⁻¹ for α -Sr₂P₂O₇ might not be observed because it is hidden behind the strong band at 1049 cm⁻¹ for α -Ba₂P₂O₇. This spectral interrelation suggests that their factor group and, therefore, their space groups are similar. The interpretation is consistent with the ability to calculate the *d*-spacing locations and relative intensities of peaks in the powder X-ray diffraction pattern of α -Ba₂P₂O₇ using the atomic coordinates for the space group of α -Sr₂P₂O₇. The band assignments for α -Ba₂P₂O₇ are consistent with those for the other α -alkaline earth pyrophosphates.

References

- 1. I. D. BROWN AND C. CALVO, J. Solid State Chem. 1, 173 (1970).
- E. STEGER AND B. KÄSSNER, Z. Anorg. Allg. Chem. 355, 131 (1967).
- 3. A. HEZEL AND S. D. ROSS, Spectrochim. Acta A 23, 1583 (1967).
- 4. J. HUNUZA, B. JEZOWSKA-TRZEBIATOWSKA, AND K. LUKASZEWICZ, J. Mol. Struct. 13, 391 (1972).
- R. W. MOONEY AND R. L. GOLDSMITH, J. Inorg. Nucl. Chem. 31, 933 (1969).

- A. HEZEL AND S. D. ROSS, Spectrochim. Acta A 24, 131 (1968).
- 7. R. HUBIN AND P. TARTE, Spectrochim. Acta A 23, 1815 (1967).
- D. E. C. CORBRIDGE AND E. J. LOWE, J. Chem. Soc. 1954, 493 (1954).
- 9. A. N. LAZAREV AND T. F. TENISHEVA, Izv. Akad. Nauk. SSSR, Neorg. Mater. 5, 82 (1969).
- A. N. LAZAREV, "Vibrational Spectra and Structure of Silicates," translated by G. D. Archard, Consultants Bureau, N.Y. (1972).
- 11. R. W. MOONEY, S. Z. TOMA, AND J. BRUNVOLL, Spectrochim. Acta A 23, 1541 (1967).
- 12. A. N. LAZAREV AND T. F. TENISHEVA, Dokl. Akad. Nauk. SSSR 177, 849 (1967).
- 13. B. C. CORNILSEN AND R. A. CONDRATE, SR., J. Chem. Phys. Solids, in press (1977).
- 14. P. W. RANBY, D. H. MASH, AND S. T. HENDERSON, Brit. J. Appl. Phys., Suppl. 4, S18 (1955).
- 15. A. O. MCINTOSH AND W. L. JABLONSKI, Anal. Chem. 28, 1424 (1956).
- 16, J. A. PARODI, R. L. HICKOK, W. G. SEGELKEN, AND J. R. COOPER, J. Electrochem. Soc. 112, 688 (1965).
- 17. J. SROKA, private communication.
- R. C. ROPP, M. A. AIA, C. W. W. HOFFMAN, T. J. VELEKER, AND R. W. MOONEY, *Anal. Chem.* 31, 1163 (1959).
- 19. R. W. MOONEY, M. A. AIA, C. W. W. HOFFMAN, AND R. C. ROPP, J. Amer. Chem. Soc. 81, 826 (1959).
- 20. C. CALVO, Inorg. Chem. 7, 1345 (1958).
- 21. C. CALVO, Acta Crystallogr. 23, 289 (1967).

- 22. K. LUKASZEWICZ, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 15, 53 (1967).
- Mineral. Cristallogr. 90, 285 (1967).
- 25. C. CALVO, K. Y. LEUNG, AND C. V. STAGER, J. Chem. Phys. 49, 3653 (1968).
- 23. L. HAGMAN, I. JANSSON, AND C. MAGNELI, Acta Chem. Scand. 22, 1419 (1968).
- 24. J. C. GRENIER AND R. MASSE, Bull. Soc. Fr.
- 26. C. I. PARK AND R. A. CONDRATE, SR., Appl. Spectrosc. 30, 352 (1976).